마지막까지 간 횟수를 세면 된다고 생각해서 전역변수 cnt 를 기저사례안에서 ++시키면 구할 수 있을 것이라고 생각했다. 
하지만 실제로 저 기저사례를 방문하는 횟수가 가능한 개수가 아니라 그 기저사례를 방문하기 전에 cache에 저장된 값이 기저사례에 방문하기 이전에 방문한 값을 저장하고 있다면
실제로 기저사례는 방문하지 않으면서 cache는 그 경우를 처리한다. 

참조적 투명 함수에 대해 생각하고 전역변수는 최대한 안 쓰고 해결할 수 있게 해봐야 겠다. 

아래 보드 점프 문제는 똑같은데 제한이 2^63-1 보다 큰 것도 온다. BigInt 라이브러리를 가지고 와서 사용했다. 


//1890 점프
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long ll;
ll tb[1001][1001]; // tb == table
ll cch[1001][1001]; // cch == cache
ll n, cnt = 0;
ll go(ll x, ll y) {
       if (x == y && y == n - 1) {
              return 1;
       }
       /*if (tb[x][y] == 0) {
       cch[x][y] = -1;
       }*/
       ll& ret = cch[x][y];
       if (ret != -1) {
              return ret;
       }
       ret = 0;
       ll next = tb[x][y];
       if (next > 0) {
              if (x + next < n) {
                     ret += go(x + next, y);
              }
              if (y + next < n) {
                     ret += go(x, y + next);
              }
       }
       return ret;
}
void process() {
       cin >> n;
       for (int i = 0; i < n; ++i) {
              for (int j = 0; j < n; ++j) {
                     cin >> tb[i][j];
                     cch[i][j] = -1; // cahce init
              }
       }
       //cout << (cch[n-1][n-1]==1 ? "YES" : "NO") << endl;
       cout << go(0, 0) << endl;
       return;
}
int main(void)
{
       process();
       return 0;
}

#include <iostream>
#include <algorithm>
#include <vector>
#include <cstring>
#include <stdlib.h>
#include <string>
using namespace std;
// Big Int 구현 library
typedef int64_t ll;
//typedef long long int ll;
typedef pair<ll, ll> lll;
typedef pair<ll, int> lli;
typedef pair<int, int> ii;
#define EL printf("\n")
#define OK printf("OK")
#define pb push_back
#define mp make_pair
#define ep emplace_back
#define X  first
#define Y  second
#define fillchar(a,x) memset(a, x, sizeof(a))
#define FOR(i,l,r) for (int i=l;i<=r;i++)
#define FORD(i,r,l) for (int i=r;i>=l;i--)
const int base = 1e9;
typedef vector<int> BigInt;
void Set(BigInt &a) {
       while (a.size() > 1 && a.back() == 0) a.pop_back();
}
void Print(BigInt a) {
       Set(a);
       printf("%d", (a.size() == 0) ? 0 : a.back());
       FORD(i, a.size() - 2, 0) printf("%09d", a[i]); EL;
}
BigInt Integer(string s) {
       BigInt ans;
       if (s[0] == '-') return ans;
       if (s.size() == 0) { ans.pb(0); return ans; }
       while (s.size() % 9 != 0) s = '0' + s;
       for (int i = 0; i<s.size(); i += 9) {
              int v = 0;
              for (int j = i; j<i + 9; j++) v = v * 10 + (s[j] - '0');
              ans.insert(ans.begin(), v);
       }
       Set(ans);
       return ans;
}
BigInt Integer(char c[]) {
       string s = "";
       FOR(i, 0, strlen(c) - 1) s = s + c[i];
       return Integer(s);
}
BigInt Integer(ll x) {
       string s = "";
       while (x > 0) s = char(x % 10 + '0') + s, x /= 10;
       return Integer(s);
}
BigInt Integer(int x) {
       return Integer((ll)x);
}
void operator >> (istream &in, BigInt &a) {
       string s;
       getline(cin, s);
       a = Integer(s);
}
void operator << (ostream &out, BigInt a) {
       Print(a);
}
bool operator < (BigInt a, BigInt b) {
       Set(a);
       Set(b);
       if (a.size() != b.size()) return (a.size() < b.size());
       FORD(i, a.size() - 1, 0)
              if (a[i] != b[i]) return (a[i] < b[i]);
       return false;
}
bool operator > (BigInt a, BigInt b) {
       return (b < a);
}
bool operator == (BigInt a, BigInt b) {
       return (!(a < b) && !(b < a));
}
bool operator <= (BigInt a, BigInt b) {
       return (a < b || a == b);
}
bool operator >= (BigInt a, BigInt b) {
       return (b < a || b == a);
}
bool operator < (BigInt a, int b) {
       return (a < Integer(b));
}
bool operator > (BigInt a, int b) {
       return (a > Integer(b));
}
bool operator == (BigInt a, int b) {
       return (a == Integer(b));
}
bool operator >= (BigInt a, int b) {
       return (a >= Integer(b));
}
bool operator <= (BigInt a, int b) {
       return (a <= Integer(b));
}
BigInt max(BigInt a, BigInt b) {
       if (a > b) return a;
       return b;
}
BigInt min(BigInt a, BigInt b) {
       if (a < b) return a;
       return b;
}
BigInt operator + (BigInt a, BigInt b) {
       Set(a);
       Set(b);
       BigInt ans;
       int carry = 0;
       FOR(i, 0, max(a.size(), b.size()) - 1) {
              if (i < a.size()) carry += a[i];
              if (i < b.size()) carry += b[i];
              ans.pb(carry%base);
              carry /= base;
       }
       if (carry) ans.pb(carry);
       Set(ans);
       return ans;
}
BigInt operator + (BigInt a, int b) {
       return a + Integer(b);
}
BigInt operator ++ (BigInt &a) { // ++a
       a = a + 1;
       return a;
}
void operator += (BigInt &a, BigInt b) {
       a = a + b;
}
void operator += (BigInt &a, int b) {
       a = a + b;
}
BigInt operator - (BigInt a, BigInt b) {
       Set(a);
       Set(b);
       BigInt ans;
       int carry = 0;
       FOR(i, 0, a.size() - 1) {
              carry += a[i] - (i < b.size() ? b[i] : 0);
              if (carry < 0) ans.pb(carry + base), carry = -1;
              else ans.pb(carry), carry = 0;
       }
       Set(ans);
       return ans;
}
BigInt operator - (BigInt a, int b) {
       return a - Integer(b);
}
void operator -- (BigInt &a) { // --a
       a = a - 1;
}
void operator -= (BigInt &a, BigInt b) {
       a = a + b;
}
void operator -= (BigInt &a, int b) {
       a = a - b;
}
BigInt operator * (BigInt a, BigInt b) {
       Set(a);
       Set(b);
       BigInt ans;
       ans.assign(a.size() + b.size(), 0);
       FOR(i, 0, a.size() - 1) {
              ll carry = 0ll;
              for (int j = 0; j<b.size() || carry > 0; j++) {
                     ll s = ans[i + j] + carry + (ll)a[i] * (j<b.size() ? (ll)b[j] : 0ll);
                     ans[i + j] = s % base;
                     carry = s / base;
              }
       }
       Set(ans);
       return ans;
}
BigInt operator * (BigInt a, int b) {
       return a * Integer(b);
}
void operator *= (BigInt &a, BigInt b) {
       a = a * b;
}
void operator *= (BigInt &a, int b) {
       a = a * b;
}
BigInt operator / (BigInt a, BigInt b) {
       Set(a);
       Set(b);
       if (b == Integer(0)) return Integer("-1");
       BigInt ans, cur;
       FORD(i, a.size() - 1, 0) {
              cur.insert(cur.begin(), a[i]);
              int x = 0, L = 0, R = base;
              while (L <= R) {
                     int mid = (L + R) >> 1;
                     if (b*Integer(mid) > cur) {
                           x = mid;
                           R = mid - 1;
                     }
                     else
                           L = mid + 1;
              }
              cur = cur - Integer(x - 1)*b;
              ans.insert(ans.begin(), x - 1);
       }
       Set(ans);
       return ans;
}
BigInt operator / (BigInt a, int b) {
       Set(a);
       BigInt ans;
       ll cur = 0ll;
       FORD(i, a.size() - 1, 0) {
              cur = (cur*(ll)base + (ll)a[i]);
              ans.insert(ans.begin(), cur / b);
              cur %= b;
       }
       Set(ans);
       return ans;
}
void operator /= (BigInt &a, BigInt b) {
       a = a / b;
}
void operator /= (BigInt &a, int b) {
       a = a / b;
}
BigInt operator % (BigInt a, BigInt b) {
       Set(a);
       Set(b);
       if (b == Integer(0)) return Integer("-1");
       BigInt ans;
       FORD(i, a.size() - 1, 0) {
              ans.insert(ans.begin(), a[i]);
              int x = 0, L = 0, R = base;
              while (L <= R) {
                     int mid = (L + R) >> 1;
                     if (b*Integer(mid) > ans) {
                           x = mid;
                           R = mid - 1;
                     }
                     else
                           L = mid + 1;
              }
              ans = ans - Integer(x - 1)*b;
       }
       Set(ans);
       return ans;
}
int operator % (BigInt a, int b) {
       Set(a);
       if (b == 0) return -1;
       int ans = 0;
       FORD(i, a.size() - 1, 0)
              ans = (ans*(base%b) + a[i] % b) % b;
       return ans;
}
void operator %= (BigInt &a, BigInt b) {
       a = a % b;
}
void operator %= (BigInt &a, int b) {
       a = a % Integer(b);
}
BigInt gcd(BigInt a, BigInt b) {
       Set(a);
       Set(b);
       while (b > Integer(0)) {
              BigInt r = a % b;
              a = b;
              b = r;
       }
       Set(a);
       return a;
}
BigInt lcm(BigInt a, BigInt b) {
       return (a*b / gcd(a, b));
}
BigInt sqrt(BigInt a) {
       BigInt x0 = a, x1 = (a + 1) / 2;
       while (x1 < x0) {
              x0 = x1;
              x1 = (x1 + a / x1) / 2;
       }
       return x0;
}
BigInt pow(BigInt a, BigInt b) {
       if (b == Integer(0)) return Integer(1);
       BigInt tmp = pow(a, b / 2);
       if (b % 2 == 0) return tmp * tmp;
       return tmp * tmp * a;
}
BigInt pow(BigInt a, int b) {
       return pow(a, (Integer(b)));
}
int log(int n, BigInt a) { // log_n(a)
       Set(a);
       int ans = 0;
       while (a > Integer(1)) {
              ans++;
              a /= n;
       }
       return ans;
}
// Big Int 구현 library 끝
int tb[1001][1001]; // tb == table
BigInt cch[1001][1001]; // cch == cache
int n, cnt = 0;
BigInt go(int x, int y) {
       if (x == y && y == n - 1) {
              return Integer(1);
       }
       /*if (tb[x][y] == 0) {
       cch[x][y] = -1;
       }*/
       BigInt& ret = cch[x][y];
       if (ret != Integer(-1)) {
              return ret;
       }
       ret = Integer(0);
       int next = tb[x][y];
       if (next > 0) {
              if (x + next < n) {
                     ret += go(x + next, y);
              }
              if (y + next < n) {
                     ret += go(x, y + next);
              }
       }
       return ret;
}
void process() {
       cin >> n;
       for (int i = 0; i < n; ++i) {
              for (int j = 0; j < n; ++j) {
                     cin >> tb[i][j];
                     cch[i][j] = Integer(-1); // cahce init
              }
       }
       //cout << (cch[n-1][n-1]==1 ? "YES" : "NO") << endl;
       Print(go(0, 0));
       return;
}
int main(void)
{
       process();
       return 0;
}


'알고리즘' 카테고리의 다른 글

[DP] 백준 9251 LCS  (0) 2018.04.29
[DP] 백준 10942 팰린드롬?  (0) 2018.04.29
[DP] 백준 2096 내려가기  (0) 2018.04.29
[DP] 백준 9507 Generations of Tribbles  (0) 2018.04.29
[DP] 백준 1309 동물원  (0) 2018.04.29

+ Recent posts